
co UNIVERSITY OF COLORADO

Sequential and Parallel Methods

for Unconstrained Optimization

Robert B. Schnabel

-CU-CS-414-88 October 1988

xg.. LECTE
JAN 1- 8198

* &"DEPARTMENTOF COMPUTER ASINE
>iCAMPUSo BO 43 .~ ..

2 NIVERSITY OF COLORADO, 'BOULDER Z ".-
BOULDER, COLORADO 80309-0430

Technical Report,--,,~
j ~4

Dj DISMhBTUtON STAAN A

Approved tot pubiic relewet - . . '

L Distribution Unlun-ited

17Q

Sequential and Parallel Methods
for Unconstrained Optimization

Robert B. Schnabel D I
CU-CS-414-88 October 1988 ft ELEC TE"O

JAN 1 8 18

Department of Computer Science
Campus Box 430

University of Colorado,
Boulder, Colorado, 80309 USA

This research was supported by AFOSR grant AFOSR-85-0251, ARO grant DAAL
03-88-K-0086, and NSF cooperative agreement CCR-870243.

Apfr) 1 pd

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.

The findings in this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

Accesion For -

8wPY
INSPECTEO NTIS CRA&DTIC TAB

Unanno:;,-c.d 0

.B..............

By
Dist ibtt:r;;! I

VA.j J':3 'O;

~~Id

Abstract

This paper reviews some interesting recent developments in the field of unconstrained optimization.

First we discuss some recent research regarding secant (quasi-Newton) methods. This includes analysis

that has led to ar. improved understanding of the comparative behavior of the BFGS, DFP, and other

updates in the Broyden class, as well as computational and theoretical work that has led to a revival of

interest in the symmetric rank one update. Second we discuss recent research in methods thaL utilize

second derivatives. We describe tensor methods for unconstrained optimization, which have achieved

considerable gains in efficiency by augmenting the standard quadratic model with low rank third and

fourth order terms, in order to allow the model to interpolate some function and gradient information

from previous iterations. Finally, we will review some work that has been done in constructing general

purpose methods for solving unconstrained optimization problems on parallel computers. This research

has led to a renewed interest in various ways of performing the linear algebra computations in secant
/.methods, and to new algorithms that make use of multiple concurrent function evaluations. .7

1. Introduction

This paper reviews some interesting developments in the solution of unconstrained optimization

problems over the last few years. The unconstrained optimization problem is

givenf :Rn--R , findx, forwhichf(x.)<f(x) forallxeD, (1.1)

where D is an open neighborhood containing x.. We assume that the function f is at least twice continu-

ously differentiable, even though the analytic derivatives may not be readily available. Our orientation is

towards problems where the number of variables, n, is not too large, say n 5100. Even if n is not large, it

is often the case in practice that the evaluation of f (x) is very expensive, so it is important that algo-

rithms make as few evaluations off (x) and its derivatives as possible.

In Section 2 we give a very brief and superficial summary of the standard methods for solving

unconstrained optimization problems, and their relative advantages and disadvantages. Readers familiar

with unconstrained optimization may wish to skip this section. More extensive references can be found

in various books, including Fletcher [1980], Gill, Murray, and Wright [1981], and Dennis and Schnabel

[1983].

Section 3 discusses a number of recent interesting research developments in secant methods for

unconstrained optimization. By secant methods, we mean methods that update an approximation to the

Hessian matrix at each iteration, using only values of the gradient at current and previous iterates. The

developments we discuss include experiments and analysis that have led to a better understanding of the

comparative behavior of the BFGS, DFP, and other updates in the Broyden class, as well as new theoreti-

cal and experimental research related to the symmetric rank one update.

In Section 4 we review some recent research into second derivative methods, methods that utilize

the analytic or finite difference value of the Hessian matrix at each iteration. We concentrate on tensor

methods, a new class of methods that augment the standard quadratic model with low rank approxima-

tions to higher derivatives at each iteration. We briefly describe these methods in the contexts of both

nonlinear equations and unconstrained optimization.

Finally, Section 5 summarizes some research in the fairly new field of parallel methods for uncon-

strained optimization. We concentrate on parallel secant methods. We briefly discuss both some ways to

parallelize the linear algebra computations in these methods, and some approaches that make use of mul-

tiple concurrent function evaluations.

2

2. Background

Algorithms for solving the unconstrained optimization problem (1.1) are iterative. The basic

framework of an iteration of the methods that are used when the number of variables is not too large is

shown in Algorithm 2.1.

At the highest level, two aspects of Algorithm 2.1 require elaboration. The first is the method for

calculating or approximating the Hessian matrix V2f (x,). The second is the method for chosing the new

iterate x.. In this section, we give a very brief description of the main alternatives that are used in prac-

tice, and how they compare.

Methods for calculating or approximating the Hessian matrix can be divided into two classes,

second derivative methods and secant methods. In second derivative methods, one calculatesthe Hessian

matrix V2f (x), analytically or by finite differences, at each iteration. If finite differences are used, this

costs either n additional evaluations of the gradient Vf(x) or n2 + - additional evaluations of the func-

tion f (x) at each iteration.

In secant methods, one forms an approximation H, to the Hessian V2f (x+) using only values of the

gradient at the current and previous iterates. This approximation is chosen so that the model off (x)

around the new iterate x ,

Algorithm 2.1 -- Basic Unconstrained Optimization Iteration

given current iterate x, , f (x,),
g= Vf (xe) or finite difference approximation,
H= V2f (x,) or finite difference approximation

or secant approximation

select new iterate x, by a line search or trust region method
(often x, = xc - Hi l g,)

evaluate g., = Vf (x,) or finite difference approximation if not done in previous step
(f (x,) is evaluated in previous step)

decide whether to stop; if not
calculate H, = V2f (x,) or finite difference approximation

or secant approximation

3

m(x +d)=f(x)+g(x+)Td + dTH+d, (2.2)

interpolates not only the function and gradient values at x,, but also the gradient value at the previous

iterate xc. This interpolation condition is satisfied if the new Hessian approximation H satisfys the

secant equation

H.,s =y (2.3)

wheres=x -x , y=g(x+)-g(x,)

The most commonly used Hessian approximation is the BFGS update (Broyden [1970], Fletcher [1970],

Goldfarb [1970], Shanno [1970])

.H=H - H ssTHc + yyT (2.4)$TH's yT's

This update makes a symmetric, rank two change to the previous Hessian approximation H,, and if H, is

positive definite and sTy >0, then H+ is positive definite. In practice, the initial approximation is sym-

metric and positive definite, and usually sTy is greater than 0. otherwise the update is skipped. Thus each

Hessian approximation in a BFGS method is symmetric and positive definite.

A brief comparison between the costs and theoretical properties of second derivative and secant

methods is given in Table 2.5. It shows three main differences between these two classes of methods.

First, second derivative methods require an evaluation of the Hessian matrix at each iteration, while

secant methods do not. Second, second derivative methods require 0 (n3) arithmetic operations at each

iteration, because they must factorize a symmetric matrix, while secant methods can be implemented in

0 (n) operations at each iteration, because they can use techniques to update the factorization of H, into

the factorization of H, (see e.g. Gill. Murray, and Wright [1981] or Dennis and Schnabel [1983], or Sec-

tion 5.1). Third, if the Hessian matrix at the solution is nonsingular. the eventual rate of convergence of

the second derivative methods is quadratic, while secant methods such as the BFGS converge at a slower

superlinear rate.

Thus secant methods cost less per iteration than second derivative methods, but can be expected to

require more iterations. Computational experience confirms that this is usually the case. In experiments

by Schnabel, Koontz. and Weiss [19851 on a set of standard test problems, it was found that second

derivative methods and secant methods had roughly the same reliability (ability to find the solution) , and

that the number of iterations required by secant methods was usually a relatively small multiple (less than

4

Table 2.5 -- Comparison, Second Derivative Methods vs Secant Methods

2nd Derivative Secant
Evaluations f (x) Usually I or 2
per Vf (x) Usually I
Iteration V2 f (x) I 0

Arithmetic Operations per Iteration - +0(n2) (2--6) n 2

Storage n2 /2 or n2
Rate of Local Convergence I Quadratic Superiinear

times the number of iterations required by second derivative methods. This implies that if the cost of

function evaluation is dominant, and the cost of an analytic or finite difference Hessian evaluation is at

least n times the cost of a gradient evaluation, then it is probably preferable to use secant methods. This

is the case when the Hessian is approximated by finite differences. If function evaluation is not expen-

sive, or if the cost of Hessian evaluation is not much more than the cost of gradient evaluation, then either

method is probably satisfactory with second derivative methods possibly having a slight advantage in

their reliability. It is our understanding that other computational studies have come to similar conclu-

sions.

The other aspect of Algorithm 2.1 that we discuss briefly is the method for choosing the new iterate

x.-_ Two important classes of methods, line search methods and trust region methods, are used in prac-

tice. Roughly speaking, the objective of either type of method is that close to the solution, the new iterate

should be chosen to be the minimizer - Hjl g (x,) of the model

m(xc +d)=f(x)+g (xc)Td +1dT H, d (2.6)

and that otherwise the new iterate x+ = x, + d should be some value for which f (x+) < f (x,).

In a standard line search algorithm, the new iterate x+ is chosen to be

x..=x. -X (H. +D,)-I g, (2.7)

where X, >0 is the step length and (H, +D)-l g, is the search direction. Here the diagonal matrix D, is

0 if H, is safely positive definite, and is a non-negative matrix such that H, +D, is positive definite oth-

erwise (see Gill, Murray, and Wright [1981], Dennis and Schnabel [1983]). Thus the search direction is

5

always a descent direction for f (x), and close to the solution, the search direction is the Newton direc-

tion. The step length Xe generally is chosen so that two conditions, slightly stronger than f (x) <f (x,)

and sTy >0, ar satisfied, and so that % = I is used if it is acceptable. It has been shown that it is always

possible to choose Xe to satisfy such conditions, and that many such strategies for choosing the step

length and the search direction cause line search algorithms to be both globally convergent, and to retain

fast local convergence.

The trust region approach is somewhat different. Rather than first choosing a search direction and

then a step length. the trust region algorithm first chooses an approximate step length A,, and then

chooses the next iterate x, to be an approximate solution to the problem

minimizef(x,)+g(x)Td+-,dTH d subjectto II d 11 5 A, (2.8)

If this step does not result in a satisfactory decrease in f (x), the trust region A, is reduced and problem

(2.8) is solved again. If x+ is satisfactory, the trust region is adjusted for the next iteration.

The solution to the trust region problem (2.8) is d =-HII l g, if H, is positive definite and

IIH - l CI I <A,, otherwise it is a pair (d, p.) for which

(Hc + tct)d=-ge , (2.9)

H, + 4 I is at least positive semi-definite, and II d II = Ac . Since this step is expensive to calculate.

trust region algonthms usually approximate it in one of two ways. Either they calculate a d which

satisfies (2.9) io sorne L and nas length approximately equal to the trust radius, or they restrict the

choice of d to a two-dimensional subspace, as in the "dogleg" algorithms. Many strategies for approxi-

mately solving the trust region problem (2.8), and for adjusting the trust radius A,, have been shown to

lead to algorithms that are globally convergent and retain fast local convergence. For more information

on trust regions methods, see for example Dennis and Schnabel [1983], Mord and Sorensen [1983], or

Shultz, Schnabel, and Byrd [1985].

In our computational experience (see e.g., Schnabel, Koontz, and Weiss [19851), we have found no

systematic differences between line search and trust region algorithms. This is true both in the case

where H, is the analytic or finite difference Hessian, and where it is a secant approximation. Sometimes,

however, there are substantial differences between the efficiency of line search and trust region algo-

rithms on specific problems, so that it may be useful to have both options available in software. Line

search methods may enjoy a small advantage when used in conjunction with secant approximations to the

Hessian. because they can assure that the necessary and sufficient condition for a positive definite secant

update, sTy > 0, is satisfied at each iteration, while trust region methods cannot do this. Conversely,

trust region methods may enjoy a small advantage when used with analytic or finite difference Hessians,

because they seem to deal more directly with indefinite Hessians.

3. Recent Research on Secant Methods

In this section. we review some interesting recent developments concerning secant methods for

unconstrained optimization. These developments fall into two categories. First, in Section 3. 1, we dis-

cuss several research contributions that have helped explain the differences between the two best known

secant updates, the BFGS and the DFP. Some of this work has also considered other updates in the Broy-

den class, which consists of all linear combinations of the BFGS and DFP. Secondly, in Section 3.2, we

discuss some research that has caused a revival of interest in the symmetric rank one update.

3.1 Understanding the difference in performance between the BFGS, DFP, and other updates in

the Broyden class

As we mentioned in Section 2. secant methods are commonly used to solve unconstrained optimi-

zation problems when function evaluation is expensive and analytic values of the Hessian are not avail-

able. These methods update an approximation H, to Vf (xc) into an approximation H. to V2f (x.),

using values of the gradient at x, and x+.

The most commonly used secant update for unconstrained optimization is the BFGS update (2.4).

Among its important properties are that it obeys the secant equation (2.3), that H+ differs from Hc by a

symmetric matrix of rank two, and that H. is positive definite as long as H, is positive definite and

sTy >0. It has long been known that many other updates have these same algebraic properties. In partic-

ular, the DFP update

(y-Hcs)y7 +y(y-Hcs) _ yT(y-Hs)s (3.1)y Ts (y s)2

(Davidon [1959], Fletcher and Powell [1963]), the oldest known secant update for unconstrained optimi-

zation. is another rank two update that obeys the secant equation and preserves symmetry and positive

definiteness under the same conditions as the BFGS. In addition, any update in the Broyden class, which

consists of all linear combinations of the BFGS and DFP

7

H) (I -) l)H+5FGs + H+DFP (3.2)

also is a symmetric rank two update that obeys the secant equation. Furthermore, if 0 (0,1], then H+(0)

also is positive definite if H, is positive definite and sTy >0. All the updates in the Broyden class also

share the important property that they ar invariant under linear transformations of the variable space (see

e.g. Dennis and Schnabel [1983]).

For some time, the conventional wisdom has been that the BFGS is the best update in the Broyden

class in practice, and that it is significantly superior to the DFP. There has been little theoretical analysis,

however, that helps explain this superiority. Two types of convergence analysis have been successfully

applied to secant methods. One type, which originated with the work of Broyden. Dennis, and Mord

[1973], proves local superlinear convergence for a direct prediction algorithm (where each iterate xk+I =

xk -HC I Vf(xt)) under the initial assumptions that II xo-x. II <e and II Ho-V 2 f(xo) f1 <5 fore

and 8 sufficiently small. Under these assumptions, Broyden, Dennis, and Mort [1973] proved the super-

linear convergence of the iterates produced by either the BFGS or the DFP update. Stachurski [1981] and

Griewank and Toint [1982] proved analogous results for any oe [0.1] in (3.2) under the same assump-

tions. Thus this convergence theory does not differentiate at all between the BFGS, DFP, and their con-

vex combinatois.

A second type of convergence result has been proven by Powell [1976]. Under the assumption that

f (x) is convex, he establishes both global and local superlinear convergence of a BFGS algorithm that

uses a standard line search. While he does not establish this result for the DFP or any other update in the

Broyden class, until recently there was no clear understanding of whether or not the result could be

extended to other updates. Therefore it was not clear whether this result helped distinguish between vari-

ous secant updates.

The first recent contribution that we discuss towards understanding the difference between the

BFGS and other updates was provided by Powell [1986]. He compares the behavior of the BFGS and the

DFP when solving the problem

f(x)=xTx, n---2, Ho= 1 0] (33)

under the assumption that the iterates are chosen by xk, -X - I Vf (xk). (Note that due to the scale

X22

invariance of these methods, (3.4) is equivalent to f (x)=x 1
2 + -'-" H 0 =[.) Powell shows that if X is

much greater than I. and if a particularly difficult starting point,

8

x° = cpsi y = arc tan'FX (3.4)

is chosen, then the BFGS will require about 2.4 logloX iterations to achieve convergence, whereas the

DFP will require about . iterations. If . is much less than 1, either method requires at most about 10

iterations.

This analysis shows a potentially huge difference between the performance of the BFGS and the

DFP in some situations. Table 3.5 summarizes some computations performed by Powell [1986] to

confirm this analysis. The first two lines show the number of iterations required by both methods to

reduce i I x I I by a factor of 104, using xo given in (3.4). They correspond very closely to the estimates

from Powell's analysis. The last two rows show the number of iterations required to reduce II x II by a

I
factor of 104 when x0 = cos 400 While they indicate that the worst case is somewhat extreme, they

sin 4 0 j
still show a clear superiority of the BFGS.

Thus the analysis by Powell [1986] of the behavior of the BFGS and DFP on the problem (3.3)

gives some indication of a fundamental difference between these two updates. A second recent paper, by

Byrd, Nocedal. and Yuan [1987], sheds additional light on the subject.

Byrd. Nocedal, and Yuan extend the global and local superlinear convergence of Powell [19761 for

the BFGS update to any update in the Broyden class (3.2) with 0 [0,1), that is any convex combination

Table 3.5 -- Iterations Required for I I < 10- 4
1 I I on Problem (3.4)

(from Powell [1986])

! . !101 I C1 103 104 106 1

S ad BFGS 8 1i 15 20

DFP 16 107 1006

Average BFGS 6 7 7 7

DFP 10 15 19 24

WME E

9

of the BFGS and the DFP except for the DFP itself. The techniques they use to prove this result give

some interesting insight into the behavior of these methods. A key quantity in their analysis is cos (Ok),

where Ok is the angle between the step direction and the negative gradient direction at the kth iteration. If

this angle is less than any a < 900 infinitely often, then the iterates produced by any standard line search

method will be globally convergent (Wolfe [1969, 1971]). Byrd, Nocedal, and Yuan show that, if f (x) is

uniformly convex and xk~. = Xk - X/, Hj I Vf (xk), then

COS (0k) 2! %k (3.6)

c -Trace (Ht)

for some constant c. This indicates that the method can fail to have the desired global convergence pro-

perties only if the step lengths Xk become arbitrarily close to 0, or if the trace of Hk becomes arbitrarily

large. Next they show that for any) e (0,1], the geometric mean of the step lengths {(XA) produced by

the algorithm is bounded below. This means that the step lengths do not converge to 0 for any 0 e [0, 1],

so that the only possible impediment to convergence for any such update is Trace(Hk). Finally, Byrd,

Nocedal, and Yuan show that

Trace (Hk+1) - Trace (Hk) - (I --- ___ + f (Ok, Lk,Ok, Hk) (3.7)

c (cos (Ok)) 2

where t(Ok ,Xk ,Ok, HI) are some additional terms that are less crucial to the analysis. Equation (3.7) indi-

cates that if the method takes a bad step (i.e., cos (0k) close to 0), then the trace of HkI will be

significantly less than the trace of Hk, as long as 0 < 1. This in turn can be used to show that for any

method with b e [0,1], there cannot be too many bad steps, which leads to both global and local super-

linear convergence.

An interesting aspect of the convergence of Byrd, Nocedal, and Yuan [1987] is that it shows that

secant methods with 0<1 have a "self-correcting" property with respect to Trace(Hk) that becomes less

strong as 0 gets closer to 1, and is not present for 0 = 1, the DFP. This analysis does not show that the

DFP fails to possess the same global and local convergence properties, but it does seem to point out a fun-

damental deficiency of the DFP update.

Byrd, Nocedal, and Yuan [1987] also provide a simple example that shows the deterioration of the

computational performance of secant methods as9 goes from 0 to 1. They consider the function

f(x) = x x +(0.1)(4IxT [1x)2, n=2 (3.8)

with the starting values x_ = cos 701 , Ho= [1 0 41 . Table 3.9 shows the number of iterations
sin 7 0 0 10

10

required by an unconstrained optimization method with a modem line search to achieve

II xk II : 10 -411x II for various values of *. This example clearly exhibits a deterioration in

efficiency as 0 goes from 0 to 1, but shows that this deterioration is most marked very close to the DFP
(#=I).

The analysis and computational example of Byrd, Nocedal, and Yuan [19871 also naturally suggest

that one might try values of 0 < 0. This possibility has been investigated in a paper by hang and Tewar-

son [19861. They suggest a heuristic for chosing a value of 0 < 0 in (3.2), and show that on a set of test

problems, their method is about 10% to 15% more efficient than the BFGS on the average. They are able

to prove global and r -linear convergence as long as Ot > ck, where ck <0 is a quantity that is computable

in practice, but can only show superlinear convergence if Bk a Fk, where 'k <0 is not computable in prac-

tice. Thus, their computational and theoretical results are very interesting, but given the heuristic nature

of the choice of 0, and the lack of a fully satisfactory superlinear convergence result, there is probably

not yet strong enough computational evidence to warrant switching from the BFGS to their new method.

It will be seen that the same contrast, between slightly improved computational performance and

the lack of fully satisfactory superlinear convergence results, exists for some methods to be discussed in

Section 3.2.

32 Recent Research on the Symmetric Rank One Update

It has long been known that there is one rank one update that satisfies the secant equation (2.3) and

preserves symmetry. This update is known as the symmetric rank one (SRI) update,

Table 3.9 -- Iterations required for II XII < 10"4 II xo II on Problem 3.8
(from Byrd, Nocedal, Yuan (19871)

0 0.2 0.4 0.6 0.8 0.9 0.99 0.999 1

iterations 15 21 1 26 32 66 115 630 2223 4041

11

H+=H, + (y - H , s) (y -H. s)T (3.10)
(y-Hcs)Ts

While this update has not been used much in practice, some recent research is leading to a revival of

interest in it. In this section we briefly review the properties of this update, and then discuss this recent

research.

It is straightforward to show that the SRI update is a member of the Broyden class (3.2), with

yTs (3.11)

(y-HCs)Ts

This value of 0 is always outside the range [0,1], as long asH, is positive definite and sry>0. Thus the

SR 1 update is not covered by the convergence theory mentioned in Section 2 or 3.1, nor is it guaranteed

to be positive definite even if sTy >0. These properties figure prominently in the main advantages and

disadvantages of the update.

The SRI update has two main advantages. First, it is a rank one modification whereas all the other

members of the Broyden class are rank two modifications; this may make it cheaper to implement.

Second, it is well known that the SRI possesses quadratic terminanon, meaning that if it is applied to a

quadratic function f (x) and the step -He- Vf (x,) is used at each iteration, then in exact arithmetic, the

minimizer will be found exactly in n+l or fewer iterations. Furthermore, if n+l iterations are required.

then the final Hessian approximation will equal the exact Hessian V2f (x). It can be shown that no update

in the Broyden class that always preserves positive definiteness has this quadratic termination property.

This at least raises the possibility that the SRI update may produce more accurate Hessian approxima-

tions than other updates on general functions, and that it may have attractive local convergence proper-

ties.

On the other hand, the SRI update has several disadvantages. First, there is no reason why the

denominator (y-H,)T s cannot be zero or nearly zero, even close to the solution. This indicates a poten-

tial instability in the update. Secondly, aside from the quadratic termination result mentioned above, no

global or local convergence results analogous to those mentioned in Sections 2 and 3.1 have been esta-

blished for the SR1.

Finally, we have already said that the SRI will not necessarily yield a positive definite H. even

when s Tv >0. This could be an advantage if it allows the update to better model the actual Hessian when

it is indefinite, or it could be a disadvantage if it leads to an indefinite approximation in a region where

the actual Hessian is positive definite.

12

The revival of interest in the SRI update was started by the research of Conn. Gould, and Toint

[1986, 1987, 19881. The main focus of their research is somewhat different than that considered in this

paper. Conn, Gould. and Toint consider the bound-constrained optimization problem

minimizef(x) subjecttoi<xi<u ,i = n . (3.12)

Their research has many interesting and novel aspects, including the generalization of the notion of a

Cauchy point for unconstrained optimization to the problem (3.12), the use of inexact Newton methods

(methods that solve the linear system of equations associated with each iteration inexactly) in the context

of problem (3.12), the introduction of new techniques that allow large changes in the set of active con-

straints at each iteration, and the extension of the known global convergence theory for trust region

methods for unconstrained optimization to problem (3.12). We will not discuss these aspects of their

research further since they are outside the scope of this paper.

The part of the research of Conn, Gould, and Toint that interests us most from the perspective of

this paper is one of their computational experiments. Conn, Gould, and Toint (19861 ran their algorithm

for problem (3.12) (a trust region method using secant updates and an inexact Newton method) on 50

problems, of which 15 are unconstrained. They tried both the BFGS and the SRI updates. A summary of

their results is given in Table 3.13.

The results of Conn, Gould, and Toint [19861 show a large overall advantage for the SRI update in

comparison to the BFGS. The advantage is great on problems where bounds are present, while the two

updates appear similar on unconstrained problems.

These unconstrained optimization results interested us considerably, because if the SRI is even

competitive with me BFGS in general, then there are situations where it may be preferable due to its

simpler form. quadratic termination, and its ability to reflect indefiniteness. Thus we decided to experi-

ment with using the SRI update instead of the BFGS update in the UNCMIN code (Schnabel, Koontz,

and Weiss [19851). a fairly standard unconstrained optimization method. The results of running UNC-

MIN, using the BFGS and the SRI, on the same unconstrained problems as were used by Conn, Gould,

and Toint [1986] are shown in Table 3.14.

The UNCMIN results in Table 3.14 are very different than the unconstrained optimization results in

Table 3.13, with the UNCMIN results strongly favoring the BFGS over the SRI. The reasons for the

d "ference in the comparative performance of the BFGS and SRI updates within the algorithms of Conn,

Gould. and Toint 11986] and in UNCMIN are not clear. It should be stressed that these two algorithm are

13

Table 3.13 - Computational Results from Corn, Gould, and Toint [1986]

total SRI iterations
BFGS SRI BFGS, SRI

Problems Better Better Similar total BFGS iterations

Al (50) 9 30 11 0.71

Unconstrained (15) 6 7 2 1.12

Bounds Present (35) 3 23 9 0.56

Table 3.14 -- UNCMIN Results on the Unconstrained Problems from Table 3.13

total SRI iterations
Global BFGS SRI BFGS, SRI
Method Better Better Similar total BFGS iterations

Trust Region 10 1 3 2.66

Line Search 12 0 2 1.93

considerably different. Most importantly, Conn, Gould, and Toint [1986] use an inexact Newton strategy

while UNCMIN finds the minimizer of the quadratic model exactly. It is also important to mention that

the performances of the BFGS versions of the two algorithms arm fairly similar; the big difference

between the unconstrained optimization results in Tables 3.13 and 3.14 stems from the fact that the Conn,

Gould, and Toint algorithm performs much better using the SRI than UNCMIN does using the SRI. We

do not yet understand why this is so, nor why the comparative advantage of the SRI over the BFGS in

Conn, Gould, and Toint's tests is so much bigger for problems with simple bounds. However all these

results do seem to indicate that the SRI update in general, and the above questions in particular, warrant

additional research.

Another interesting aspect of the research of Conn, Gould, and Toint (1987] is an examination of

the convergence of the sequence of matrices generated by the SRI update. They show that if the

sequence of iterates {xk) converges to a strong local minimizer x., if each set of n consecutive steps

{xj,+-x), i=k,. , k+n-1 is uniformly linearly independent, and if the denominators of (3.10) are

bounded below in the sense that I (yk -Hk Sk)Tsk 1 c IIyk-Hk s II Ilst II for all k, then the

14

sequence of Hessian approximations (Ht) generated by the SRI algorithm converges to V2f (x.). This in

turn implies that the rate of local convergence is at least supex. ear. While these assumptions are strong,

and can probably not be guaranteed to be satisfied in theory, this convergence result still gives an indica-

tion of what might often happen in practice. Indeed, Conn, Gould, and Toint [1987] conduct some exper-

iments, using a fourth order polynomial for f (x) and running to a very tight convergence tolerance,

where they show that the SRI produces final Hessian approximations that agree with the actual Hessian at

the solution to within between 10- and I(13 , whereas the final approximations produced by the BFGS

only agree to about 10-3. This research supports the hypothesis that the quadratic termination property of

the SRI might lead to better final Hessian approximations in practice. It also seems to further indicate a

need for continued research on the role of the SRI update in unconstrained optimization.

We conclude this section by discussing a second, somewhat different, new algorithm involving the

SRI update that was recently proposed by Osborne and Sun [1988], motivated in part by the work of

Conn, Gould, and Toint. Osborne and Sun's approach is to use the SRI in such a way that it always pro-

duces positive definite Hessian approximations. They do this by first multiplying the current Hessian

approximation H, by a scale factor y> 0, and then applying the SRI update to yH,. That is

H,=yH. + (YyHcs)(y-yHs)T (3.15)
(y-yHs)T s

It is fairly easy to see that if H, is positive definite and sTy>0, then H+ given by (3.15) will be

positive definite if y is either sufficiently large or sufficiently close to 0. In fact, Osborne and Sun [1988]

show that H. is positive definite if s T y >0 and

,__)oy YTH-1 *). (3.16)

ST Hc sSTy

Note that the standard SRI update, y= 1, may or may not be contained in one of the two intervals in

(3.16).

Osborne and Sun [1988] propose using the standard SRI update, y= 1 in (3.15), if it satisfies (3.16).

Otherwise, they propose choosing the value of y that satisfies (3.16) and that leads to the optimally condi-

tioned update in the sense proposed by Davidon [19751, namely that it minimizes the 12 condition number

of H, -'t2 HHc -1/2 among all the updates of the form (3.15). Osborne and Sun derive a closed form for

this optimal value of y; actually there are two values of y that yield equally optimal solutions, one in each

of the intervals in (3.16).

is

Osborne and Sun report promising computational results using this scaled SRI method on a small

set of test problems. We have tried using their update in the UNCM1N code, and have found that on the

average it leads to a 10-15% improvement over the BFGS update on a standard set of test problems.

Therefore, since the Osborne and Sun algorithm has the additional advantage in comparison to the BFGS

that it only requires a rank one update, it appears to merit further consideration. On the other hand, the

scaled SRI update (3.15) shares with the standard SRI update (3.10) the apparent disadvantage that no

global or local convergence results have been proven for it under the standard assumptions that are used

in the convergence analysis of many secant methods, including the BFGS (see Section 3.1). Thus more

research seems necessary to understand both the practical and theoretical properties of all the SRI

methods discussed in this section.

4. Recent Research on Second Derivative Methods - Tensor Methods

In this section we turn our attention to second derivative methods, methods where the analytic or

finite difference Hessian is available at each iteration. We discuss one recent development, the develop-

ment of tensor methods. This is a class of methods that bases each iteration upon a higher order model

than is used by standard methods. The higher order terms in this model are chosen so that the model is

hardly more expensive to form, store, and solve than the standard model.

Tensor methods were first developed by Schnabel and Frank [1984] in the context of solving sys-

tems of nonlinear equations. These methods base each iteration upon a quadratic model, rather than the

linear model that is standard for solving systems of nonlinear equations. Since an understanding of tensor

methods for nonlinear equations is helpful in understanding the more complicated tensor methods for

unconstrained optimization, we review tensor methods for nonlinear equations in Section 4.1. Then in

Section 4.2 we describe tensor methods for unconstrained optimization. These methods base each itera-

tion upon a fourth order model, rather than the standard quadratic model (2.6).

We note that another recent body of research has considered the use of higher ordered models when

the objective function is a "factorable function." See for example Jackson [1983], Jackson and McCor-

mick [1986], and McCormick [1983].

16

4.1 Tensor Methods for Nonlinear Equations

The nonlinear equations problem is

given F : R I- R ,find x. for which F (x.)0 . (4.1)

When the Jacobian matrix F'(xc) is available, algorithms for solving (4.1) generally base each iteration

upon the linear model

M(x +d)=F(x,)+F'(x,)d . (4.2)

This model requires n2 storage locations, and -3- arithmetic operations to solve it at each iteration. Its

use leads to quadratic convergence for problems where F'(x.) is non-singular. but at best linear conver-

gence for problems where F'(x.) is singular (see for example Decker and Kelly [1980a, b], Griewank

(19801).

The tensor method proposed by Schnabel and Frank [1984] instead bases each iteration upon the

model

M (x, +d) =F(x,) +F'(x,)d + I/2 Tdd (4.3)

where T 4E R 11A is a three-dimensional object often referred to as a tensor. If T, =F"(x,), then (4.3)

is just a second order Taylor series model. However using (4.3) with T, = F "(x,) is not practical, as it

leads to huge increases in the costs to form, store, and solve the model. Instead. Schnabel and Frank

chose T, in (4.3) to be a very low rank approximation to F"(x,). We now briefly summarize how they

make this choice, and some of its consequences.

Schnabel and Frank [1984] choose T, in (4.3) by requiring the model to interpolate the values of

F (x) at p (not necessarily consecutive) previous iterates x_1, .. , x,. They impose the limit p<5n

and also require that the steps si = x -x-i from x, to these p previous iterates be strongly linearly

independent. The latter condition is usually much more restrictive than the limit p 'n, and most often

results in the choice p=l, meaning that only information from the most recent previous iterate is used.

Schnabel and Frank then choose the smallest T,, in the Frobenius norm, that satisfies the p interpolation

conditions M(x, -si)=F(x-i), i=1,. • ,p. The result is a rankp tensor T, of the form T, aSi ,

for some a, e Rn, i = I, p. Thus the model (4.3) becomes

M (x, + d) = F (x,) + F'(x)d + 'A ai (s$7d) 2 . (4.4)

The additional cost of forming this model is about n 2p arithmetic operations, while the additional storage

17

cost is about 4np locations. Both of these are small in comparison to the basic 0(n 3) arithmetic per

iteration and n2 storage costs of the linear model.

Due to the special form of the model (4.4), the problem of finding its root (or of minimizing

I I M (x, + d) I IT if there is no root) can be reduced to solving p quadratic equations in p unknowns plus

n-p linear equations in n-p unknowns. This is hardly more expensive than finding the root of the linear

model (4.2), requiring only about n2p additional arithmetic operations (recall that usually p =1). Further-

more. Schnabel and Frank [1984] show that the solution of (4.4) is usually well posed as long as the rank

of F '(x,) is at least n-p, whereas the solution of the linear model (4.2) only is well posed if rank (F'(xe))

"n.

The above simply shows that, by utilizing a low rank quadratic term, it is possible to add a small

amount of information to the linear model at a small cost. What is perhaps surprising is that this small

amount of information seems to lead to fairly large improvements in the cost of solving problem (4.1) in

practice. Schnabel and Frank (1984] compare an implementation of their tensor method, using a standard

line search, to a standard method for nonlinear equations that uses the linear model (4.2) and the same

line search, on a set of problems from Mord, Garbow, and Hillstrom [1981]. Their results are summar-

ized in Table 4.5; for more details, see Schnabel and Frank [1984].

Table 4.5 indicates that the tensor method leads to consistent and rather substantial improvements

in efficiency over a standard derivative-based method for solving systems of nonlinear equations.

Table 4.5 -- Comparison of Tensor and Standard Methods for Nonlinear Equations
(from Schnabel and Frank [1984])

Rank Problem Tensor Standard Two Methods Average Ratio of Tensor
F'(x. Set Better Better similar Iterations/Standard Iterations

All 1 1 1 6 0.77
H arderOnlv 14 0i 0 0.61

n-I All 15 0 2 0.58
_ Harder Only* 9 0 ! 0 0.39

n-2 L all i 11 2 0 0.63
F HarderOnlv* 7 1 0 1 0 0.50

*Only those problems where slower method required at least 10 iterations.

18

Furthermore, in these tests the number of past points, p, used in the tensor model was generally I and

never more than 3, so that the additional cost of using the tensor method was low. A Fortran code for

solving systems of nonlinear equations, and nonlinear least squares problems, by tensor methods is avail-

able from the author. Our positive experience with tensor methods for nonlinear equations also has

motivated us to consider using tensor methods for unconstrained optimization, which are described in the

next section.

4.2 Tensor Methods for Unconstrained Optimization

The extension of the tensor method for nonlinear equations that we have just described into a tensor

method for unconstrained optimization brings up an interesting general issue. In some cases, such as the

basic Newton method, methods for nonlinear equations and for unconstrained optimization are very

closely related. In sonie other cases, such as secant methods, methods for nonlinear equations and uncon-

strained optimization are considerably different. These differences are generally due to the considerations

of symmetry, convexity, and positive definiteness which are present for unconstrained optimization but

not for nonlinear equations. In the case of tensor methods, the differences between unconstrained optimi-

zation and nonlinear equations cause the tensor methods for the two problems to differ significantly.

The obvious extension of the tensor method for nonlinear equations to the unconstrained optimiza-

tion problem would be to base each iteration upon the quadratic model of the gradient

Vm(xc+d)=Vf(xc)+ V2f(xc)d+1,2Tcdd . (4.6)

that would result from simply substituting Vf (x) for F (x) in the method of Section 4. 1. This model is

unappealing for unconstrained optimization for several reasons. First, the tensor T, produced by the

method described in Section 4.1 is not symmetric, but for optimization it should be. Second, we will

want to interpolate past values of f (x) as well as Vf (x), so a procedure based solely on modeling Vf (x)

is too restrictive. Most importantly, the model (4.6) corresponds to using a third order model of f (x,),

and a third order model has two basic deficiencies for unconstrained optimization. One is that it does not

have a global minimizer. A second is that it does supply enough informat'on to lead to faster than linear

convergence for problems where V2f (x.) is singular. For this, fourth order information is necessary as

well.

For these reasons, Schnabel and Chow [19881 propose using a fourth order model of f (x)

M (xc +d) = f (x.:) + V f (xc)T d + IdT V f (xc)d + -Tc ddd + 4 V, dddd (4.7)

where T, E R"")" is a symmetric approximation to V3f(x,) and V, e R m x"n'xf is a symmetric

19

approximation to V'f (x). While this model may appear complicated, the crucial point is that T, and V,

will again be low rank tensors. We will see that this again makes the model hardly more expensive to

form, store, and solve than the standard quadratic model.

To form the tensor model (4.7), Schnabel and Chow require it to interpolate the values of f (x) and

Vf (x) at p previous iterates x-, i=1, • - - ,p. These iterates are chosen by the same criteria as in the ten-

sor method for nonlinear equations, namely that p S'n and that the steps s = x, -x-i are strongly linearly

independent. In practice, usually the second criterion limits p to 1, meaning that only information from

the most recent previous iteration is used. Next Schnabel and Chow choose the smallest V,, in the Fro-

benius norm, that is consistent with these interpolation conditions. The result is a symmetric rank p ten-

sor V, of the form

V, = a sisisisi, (4.8)

where each ai is a scalar. Finally they choose T, to be the smallest symmetric tensor, in the Frobenius

norm, that is consistent with the choice of the V, and the interpolation conditions. This yields a rank 2p

tensor T, of the form

T = (bi si si + si bi i + si si bi (4.9)

where each bi e R ". This order of choosing V, and T, causes the model to interpolate as much informa-

tion as possible with a third order model, and to use the fourth order term only where a third order model

is insufficient.

Even though T, is a rank 2p tensor, Schnabel and Chow [1988] show that the minimizer of the

resultant tensor model (4.7) can still be found by solving p cubic equations in p unknowns and n-p

linear equations in n-p unknowns. Thus the size of the system of nonlinear equations that must be

solved to minimize the tensor model for unconstrained optimization is the same as for nonlinear equa-

tions, with the difference being that the p nonlinear equations are cubic rather than quadratic. Since p

generally is 1. this is not significant. The total additional costs of using the tensor model rather than the

standard quadratic model are again 0 (np) storage locations, and 0 (n2p) arithmetic operations per itera-

n3

tion. This is again minor in comparison to the n 2 storage locations and at least arithmetic operations

per iteration that are required by the standard method.

Schnabel and Chow [19881 compare an implementation of their tensor method for unconstrained

optimization to a standard method based on a quadratic model, on the problems from Mord, Garbow. and

20

Hillstrom [1981]. Both algorithms use the same, fairly standard trust region strategy. A summary of

their computational results is given in Table 4.10. The lines labeled "p 2l" show the results when p, the

number of previous iterates whose function and gradient is interpolated is interpolated, is allowed to

exceed one, while the lines labeled "p=l" show the results when only information from the most recent

iterate is used.

These results indicate that once again, the tensor method seems to obtain a considerable improve-

ment in efficiency from using a rather small additional amount of information. Indeed, the tensor method

for unconstrained optimization rarely chooses p >I even when we allow this possibility, and Table 4.10

shows if we require p=l. then the results do not change appreciably. Thus it appears that we can achieve

substantial savings at a very low cost.

It is not yet clear to us why tensor methods for both unconstrained optimization and nonlinear

equations achieve rather large improvements in efficiency from utilizing a rather small additional amount

of information. For one class of problems, nonlinear equations with rank(F'(x.)) = n-1, the observed

improvement is probably due to a faster local convergence rate, since Frank [1984] shows that the tensor

method achieves 3-step superlinear convergence as opposed to the linear rate of standard methods. This

pattern of convergence is observed in practice, and may also occur in the analogous case for uncon-

strained optimization. But the rate of convergence of the tensor methods is almost certainly not superior

to .,andard methods when F'(x.), or V2f (x.), is non-singular, and yet the tensor methods usually are

considerably faster in these cases too. Our conjecture is that this improvement occurs because the

Table 4.10 -- Comparison of Tensor and Standard Methods for Unconstrained Optimization
(from Schnabel and Chow [1988])

Average Ratio of
Rank Value of p in Tensor Standard Two Methods Tensor Iterations to

V2f (x.) Tensor Method Better Better Similar Standard Iterations

n I p 1 27 4 4 5 0.65
p= 127 1 1 7 0.62

n-I p 1 27 2 1 4 0.56

- p =I 30 3 2 0.55
n-2 pl __26_ 2 4 _ 0.59

_ _ p=l 28 5 3 I 0.58

ILi

21

directions of two consecutive steps ae often rather similar in practice, so that the additional information

provided by the tensor model, which is along the previous step direction, turns out to be especially useful.

In any case, it appears to us that the use of higher order models seems fruitful, and that additional

research on such approaches is warranted.

5. Parallel Methods for Unconstrained Optimization

It is becoming clear that the fastest computers in the future will be parallel computers. Therefore, it

is natural that there has been increased interest recently in designing parallel optimization algorithms. In

this section we discuss one aspect of this work, parallel methods for the general unconstrained optimiza-

tion problem. Some of this research will be seen to consist of the development of new algorithms

motivated by the consideration of parallel computers. while other parts simply consist of determining

good ways to parallelize existing sequential methods.

Before we begin, we need to clarify which of the various types of parallel computers we are con-

cerned with. At a high level, currently available parallel computers can be divided into three categories,

vector computers, processor arrays, and multiprocessors. Vector computers can perform pairwise addi-

tion or multiplication of long vectors of numbers quickly. They are best suited to a low level, fine grain

type of parallelism. Processor arrays (SIMD computers) are computers with many processors that can

perform the same operation in lock step on multiple data at the same time. Thus they are also suited to a

fairly low level, fine to medium grain type of parallelism. By multiprocessors (MIMD computers), we

mean computers that can perform entirely different operations on different data at the same time. These

include both shared memory multiprocessors, where all the processors share access to some of the

memory, and distributed memory multiprocessors. where each processor has its own memory and there is

no shared memory. These computers support a higher level, medium to coarse grain type of parallelism.

Among these various types of parallel architectures, the type of optimization problems we consider

in this paper seem best suited to solution on (MIMD) multiprocessors. This is because parallel algorithms

for general unconstrained optimization problems generally seem to entail a high level, coarse grain type

of parallelism. Largely this is because the evaluation of the objective function f (x), an atomic operation

in these algorithms, is itself often a lengthy calculation. rurthermore, if we wish to perform two or more

computations of f (x) concurrently, this will often require an MhMD computer since for two different

values of x. the program that evaluates f (x) may well execute different sequences of instructions. Thus

the discussion in the remainder of this section is mainly oriented towards parallel computation on

22

multiprocessors, though the specific type of multiprocessor, for example shared or distributed memory, is

relatively unimportant.

The remainder of this section will discuss parallel methods that are related to the most commonly

used general purpose unconstrained optimization method, the BFGS method with a line search. A high

level description of this method is given in Algorithm (5. 1).

Since presumably we are interested in parallel optimization in order to solve expensive problems,

we need to focus on why the BFGS method can be expensive. There are two main reasons. One is that

the function and derivative evaluations are expensive. The second is that the linear algebra computations,

namely updating the Hessian approximation and calculating the search direction, are expensive because

the number of variables is large.

There are several obvious possibilities for adapting these potentially expensive portions of the

BFGS algorithm to parallel computers. The first is to parallelize the individual calculations of the objec-

tive function f (x). This may or may not be feasible, depending upon the form of f .(x), the availability of

pre-existing parallel routines to calculate it, or the interest of the user in devising new parallel routines to

evaluate it. In any case, it is outside the scope of basic optimization research. Thus for the remainder of

this section we will assume that f (x) is evaluated on one processor.

Algorithm 5.1 -- Iteration of the BFGS Method with Line Search

given current iterate x, , f (xe),
g, = Vf (xe) or finite difference approximation,
H, = symmetric positive definite Hessian approximation

calculate search direction dc:
solve H, d, = -g,

line search:
find X. > 0 for which x. = x, + ' d, is satisfactory next iterate

evaluate g+ = Vf (x) or finite difference approximation if not done in previous step
(f (x+) is evaluated in previous step)

decide whether to stop; if not
update Hessian approximation by BFGS formula (2.4):

H+ = H, + rank two matrix

23

The second possibility is to paralelize the dominant linear algebraic computations of the BFGS

method, mainly the Hessian updates and the calculations of the step directions. We consider this topic in

Section 5.1. While it basically consists of ways to parallelize the existing method, it brings up some

interesting fundamental issues in unconstrained optimization.

The third possibility is to perform multiple evaluations of the objective function f (x) concurrently.

The possibilities here range from calculating several components of the finite difference gradient con-

currently to new algorithms that make use of concurrent function evaluations. We consider both of these

possibilities in Section 5.2.

The material in this section is taken largely from Schnabel [1987] and Byrd, Schnabel, and Shultz

[1988a, b).

5.1 Parallel Methods for the Linear Algebra Calculations in Secant Methods

In this section, we consider the parallelization of the linear algebra calculations in the standard

BFGS method. This topic is interesting because it leads us to re-examine various ways for implementing

these calculations. It also leads us to interpret a recent proposal of Han [1986] in a different light.

It is convenient to view the linear algebra calculations involved in an iteration of the BFGS method

as the update of the Hessian approximation followed by the calculation of the next search direction.

Table 5.2 summarizes four different ways of implementing these calculations, along with their costs.

These four options arise from choosing between two possibilities each for two orthogonal attributes of

how the Hessian approximation may be stored. First, one can store either an approximation to the Hes-

sian itself or an approximation to the inverse of the Hessian. Second, this approximation can either be

kept in the straightforward, unfactored, form, or one can store a matrix M from a factorization MMT of

the Hessian or the inverse Hessian approximation.

The upper left variant in Table 5.2 is the most obvious way to implement the BFGS method. It

simply consists of performing the update (2.4) to obtain H,, and then performing a Cholesky factorization

of H+ to solve H~d.=-g+ for d,. This is the only variant that requires O(n 3) arithmetic operations, all

the others require only 0 (n2).

The upper right and lower left variants in Table 5.2 are the two well-known ways for performing

the linear algebra calculations in a BFGS algorithm in 0(n 2) operations. The lower left variant was the
first known 0 (n2) implementation of the BFGS; it consists of using the formula that gives the effect of

4

24

Table 5.2 - Four Possible Implementations of the Linear Algebra Calculations:

Hk l = Hk + rank-two-matrix
solve Hk+l dk+l = -gk+l for dk+l

Matrix Stored Unfactored Matrix Stored Factored

(Hk stored, updated to Hk+l) (Lk lower triangular stored, for which Hk =Lk L ,

updated to Lt+1 lower triangular for which
Hk+l = Lk+i LI.+,)

Direct
(Hk) Hk+ =Hk + rank-two Jk+I =Lk + rank-one
Update Cholesky factor Hk+1 Jk+1 = Qk+l Lk+l by Givens rotations

2 triangular solves to find dk+l 2 triangular solves to find dk+l

0 + 2n 2
6n 2 (2.5n 2)

(H I stored, updated to Hg.,l) (Mt stored for which HC1 = Mk MT,
updated to Mk+l for which Hi"+' = Mk+lMr+l

Inverse
(Hg-1) Hi+,' = H= l + rank-two Mk+l = Mk + rank-one
Update Matrix-vector multiply to find dk+l 2 Matrix-vector multiples to find dk+l

2n- 4n2

the BFGS update on the inverses of H, and H+,

HZI = Hc-1 + (s-Hjly)ST +s(s-H-ly)T - ssT(s-H 'y)Ty (5.3)

sTy (sTy) 2 (

and then multiplying -g+ by H+;1 to get d. The upper right variant was subsequently discovered (Gill

and Murray [1972], Goldfarb [1976]), and has become the favored 0(n 2) method for implementing the

BFGS. It consists of directly updating the Cholesky factorizarion LLT of H, into the Cholesky factoriza-

tion L+L of H.. This is accomplished by expressing the BFGS update as a rank one change to the

Cholesky factor L, resulting in a non-triangular matrix J+, and then transforming J+ into a lower triangu-

lar matrix L4. through a series of 2n-2 Given's rotations. Then d+ is found by using two backsolves to

solve L.LT d+=-g+ for d+. An advantage of this implementation is that by always keeping a Cholesky

factorization, it implicitly guarantees that the Hessian approximation is numerically positive definite.

25

(For details on the operation counts, see Byrd, Schnabel, and Shultz [1988b].)

The fourth, lower right, variant is closely related to the upper right variant. It consists of updating a

factorization MMT of Hli-' directly into a factorization M+M+T of H;1 by making a rank one change to

M, and then multiplying -g, by M+M+T to obtain d. Since the savings that would occur in these

matrix vector multiplications if M+ were triangular would be exceeded by the cost of restoring M+ to tri-

angularity at each iteration, it is preferable to omit the Given's rotations that are used in the upper right

variant and simply store M as a full matrix.

To our knowledge, the lower right variant has hardly been considered in the form in which we have

just described it, but it is equivalent to a suggestion of Han (1986]. Han proposes implementing the linear

algebra of the BFGS on parallel computers by keeping a matrix Z, for which

Zc I H c Zc = 1, (5.4)

and then updating it to a matrix Z+ for which

Z+TH+Z+=1 (5.5)

by making a rank one change to Z. to obtain Z . But since equations (5.4) and (5.5) are equivalent to

HC1 =Z, Z, T and H;I =Z+Z+T, this is simply another way of interpreting the lower right variant in

Table 5.2, and it is easy to confirm that the calculations in Han's method and the lower right variant in

Table 5.2 are identical.

These four possible ways of implementing the linear algebra calculations of the BFGS method pro-

duce identical results in exact arithmetic. They differ in the number of arithmetic operations they require,

in their suitability to parallel computation, and perhaps in their accuracy when implemented in computer

arithmetic. None appears to be best in all these regards. There has long been a belief that the two left

hand variants in Table 5.2 might have problems in finite precision arithmetic because they might produce

numerically non-positive definite Hessian approximations. Powell [19871 has also shown that the two

bottom variants may have difficulties in finite precision arithmetic handling very badly scaled problems.

The combination of these two observations thus leads one to favor the upper right variant and this is the

conventional wisdom.

In several computational tests that have compared the use of these four variants in a BFGS method,

however, the differences between them have turned out to be negligible, even on somewhat extreme test

problems. These include tests performed by Grandinetti [1978], Connolly and Nocedal [1987], and tests

we recently performed using all four variants of the BFGS shown in Table 5.2 in the UNCMIN code. In

26

our tests, on no problem was there more than a 1-2% variation between the costs of solving it using these

four different implementations.

Thus we consider any of the variants in Table 5.2 to be a suitable candidate for the implementation

of the BFGS method on a parallel computer. Among these four, the bottom two variants clearly are the

most amenable to parallelization. Both require only matrix vector multiplications and rank one updates,

computations that can be easily and efficiently parallelized over a large variety of parallel architectures

and problem sizes. The upper right variant appears far more difficult to parallelize efficiently due to the

need to perform the 2n-2 Given's rotations, on vectors of size 2 through n, sequentially. The upper left

variant is clearly too expensive to consider since some of the much less expensive sequential variants

parallelize well. The difference in efficiency between the two bottom variants on parallel computers can

be expected to be about a factor of two (but only 4/3 on a distributed memory computer, see Byrd, Schna-

bel, and Shultz [1988b]), so we would tend to favor the lower left variant, but experiments using the two

bottom variants on parallel computers need to be performed.

Thus the discussion of this section has shown that the consideration of parallel computation may

lead to a different choice for implementing the linear algebraic computations in the BFGS method than is

generally made on sequential computers. It also makes it clear that, to conclusively resolve this issue,

optimization researchers need to carefully consider whether and when the inverse updates, factored or

unfactored, have practical computational deficiencies.

5.2 Utilizing Concurrent Function Evaluations for Unconstrained Optimization

In this section we review some possibilities for utilizing concurrent function evaluations in general

purpose unconstrained optimization algorithms. These possibilities include both the parallelization of

standard optimization algorithms, and new algorithms motivated by the consideration of parallel compu-

tation. Our point of departure is the standard BFGS method described in Algorithm 5.1.

Recall first the pattern of function and gradient evaluations in a standard secant method like Algo-

rithm 5.1. Each iteration performs one or more trial point function evaluations, evaluations of f (xc +d,)

for some values of the step length parameter X, within the line search. The last of these is at the success-

ful next iterate x , and is followed by the gradient evaluation at x,. Generally this is the only gradient

evaluation in the iteration. In our experience, the average number of trial point function evaluations per

iteration over the course of the algorithm tends to be between 1.2 and 1.5.

27

We are most concerned with performing these function and derivative evaluations efficiently on a

parallel computer if they are expensive. In our practical experience, when f (x) is expensive, Vf (x) usu-

ally is calculated by the finite difference approximation

Vf (x)i f (x +hi e) -f (x) n (5.6)hi

where ej is the Ph unit vector and hi is an appropriately chosen finite difference step size. This requires

n additional evaluations off (x). Clearly these function evaluations can be performed concurrently on a

parallel computer. Thus on a machine with p processors, the finite difference gradient evaluation

requires [7] concurrent function evaluation steps, steps where each processor performs at most one

evaluation off (x) concurrently.

Thus if f (x) is expensive and the number of processors, p, is much less than n, then simply paral-

lelizing the finite difference gradient calculation by performing groups of p function evaluations con-

currently leads to very good speedups. If p >=n, however, the overall speedup for all the function and

gradient evaluation steps will be no better than about half of optimal. This is because all but one of the

processors will be unused during the trial point function evaluations, and there will be at least as many

steps devoted to trial point function evaluations as to gradient evaluations.

This leads to the obvious question, "How can we utilize additional processors while evaluating

f (x, + X d,) on one processor in the line search?" There are two obvious possibilities. The most common

suggestion (see for example Dixon and Patel [1982], or Lootsma [1984]) is to supplement the line search

by evaluating f (x) at p-I other points simultaneously. We refer to this strategy as a multiple point

search.

A second possibility, originally suggested by Schnabel [1987], is to use the remaining p-1 proces-

sors to evaluate (part of) Vf (xc + X d,) by finite differences before it is known whether this gradient value

will be needed. We refer to this as a speculative (partial) gradient evaluation. If x, + X d, is accepted as

the next iterate, as it usually will be. then the function evaluations that have been performed in the specu-

lative gradient evaluation have all turned out to be necessary ones. Ifx, + Xd, is not accepted as the next

iterate, then the speculative gradient evaluation has been unnecessary, although Byrd, Schnabel, and

Shultz [1988b] describe a new method that makes some beneficial use of this information.

We believe that using the extra processors that are available, while evaluating f (x, + X d,) in the

line search, to perform a speculative finite difference gradient evaluation will usually result in a more

efficient parallel algorithm than utilizing the extra processors to perform a multiple point search. Indeed,

28

in order for the multiple point search to be the superior strategy, it would need to reduce the overall

number of iterations by a factor of almost n+P (assuming p.5n+l). In this case, the multiple pointn

search would lead to a better sequential algorithm as well. We consider this unlikely, especially since it is

usually very hard to improve upon the choice X= 1 close to the solution. We cannot make a more definite

assessment because, to our knowledge, proposers of multiple point searches have not provided the data

that would allow us to compare their strategies to speculative gradient evaluations.

If p:5n+1 and gradients are evaluated by finite differences, then we feel there is little more to say

about utilizing concurrent function evaluations for unconstrained optimization. The remaining interesting

cases are when p >n +1, or when f (x) and Vf (x) are naturally evaluated together utilizing one processor.

In either of these cases, additional processors are available while f (x) and Vf (x) are being evaluated.

Byrd, Schnabel, and Shultz [1988a, b] consider several ways to utilize these additional processors. In the

remainder of this :ection we briefly summarize aome of their suggestions.

If there are enough processors so that the function, gradient, and finite difference Hessian can all be

evaluated at once, then the analogous idea to that discussed above is to perform speculative finite differ-

ence Hessian evaluations. (Finite difference approximation of the Hessian requires n2+3n additional-T--

evaluations off (x) or n additional evaluations of Vf (x).) This means evaluating all of V2 f (x, +;.Ld,),

as well as Vf(x, +).d,), concurrently with the trial point function evaluation f (x, + X.d,). If x, +Xd, is

accepted as the new iterate x+, as it usually will be, all the speculative evaluations perform useful work.

Note that this is basically just a way to parallelize a standard second derivative method, although new

algorithmic features could be introduced to attempt to the speculative gradient and Hessian information at

unsuccessful trial points.

If there are more processors than necessary to evaluate f (x) and Vf (x) simultaneously, but not

enough to evaluate the entire finite difference Hessian simultaneously as well, then Byrd, Schnabel, and

Shultz [1988a, b] propose utilizing the remaining processors to perform speculative evaluation of part of

the finite difference Hessian at each iteration. This leads to the consideration of new optimization algo-

rithms. Now we briefly review this work

Byrd, Schnabel, and Shultz [1988a) consider many alternatives for evaluating part of the Hessian at

each iteration, and for incorporating this information into an optimization algorithm. The strategy for

evaluating pan of the Hessian which they find to be most successful is simply to evaluate some set of

columns of the Hessian at each iteration, with these sets sweeping through all the columns as the itera-

tions proceed. At any given iteration, this means one evaluates zi = V2f (x)'ei for some values

29

i E 1,c[1,n]. The strategy for incorporating this information that Byrd, Schnabel, and Shultz [1988a, b]

find best is to first update H to H by the standard BFGS update (2.4), utilizing the normal secant equation

* (2.3). Then they update H to H, by performing a multiple BFGS update (Schnabel [1983]), which causes

H+ to satisfy H+ei =z for each i e it. The rationale for inserting the information in this order is that the

normal BFGS update gives information about the Hessian between x, and x+, while the finite difference

Hessian information gives values at x,. Thus the finite difference information is inserted lasL

Byrd, Schnabel. and Schultz [1988b] show that an algorithm that utilizes the above strategy for

incorporating part of the finite difference Hessian at each iteration retains the superlinear convergence

rate of the BFGS method. Of course the intent is that the new method should perform better than the

BFGS in practice, since it uses more information, but this is about the best theoretical result one can

expect.

The results of extensive computational tests utilizing the partial Hessian methods described above

are reported in Byrd, Schnabel, and Shultz [1988a. b]. Table 5.7 summarizes their results on a set of test

problems with n=20. The second row shows the speedup of the new method, that evaluates the function,

gradient, and q columns of the finite difference Hessian at each trial point, over a parallel BFGS method

that just evaluates the function and gradient at each trial point, under the assumption that there are enough

processors to evaluate f (x), Vf (x), and q columns of the finite difference Hessian concurrently. The

third row shows the speedups of the same partial Hessian methods, under the same assumptions about the

Table 5.7 - Average Speedup of a Method Using Speculative Partial Hessian Evaluations
on a Test Set with n=20 (speed measured in function evaluations)

(from Byrd, Schnabel, and Shultz [1988b])

Number of columns of Hessian
calculated at each iteration 0J 1 2 3 4 5 20*
Speedup over Parallel BFGS
utilizing speculative gradient evaluation (1.0) 1.8 2.3 2.9 3.0 3.2 6.0
Speedup over Sequential BFGS
with finite difference gradients 17.5 31.5 40.3 50.8 52.5 56.0 105
Number of processors required to
evaluate f (x), Vf (x), V2f(x) 21 42 62 81 99 116 231
concurrently from function values

*Newton's method

a

30

number of processors, in comparison to a standard sequential BFGS method that performs finite differ-

ence gradient evaluations and utilizes only one processor. These numbers in the third row ae 17.5 times

as large as the numbers in the second row. This reflects the fact that the parallel BFGS is 17.5 times as

fast as the sequential BFGS on these problems on the average, or equivalently, that there are an average

of 1.21 trial point function evaluations per iteration on these problems. The final row shows the number

of processors that would be necessary to implement the parallel partial Hessian algorithms for each value

of q, when the finite difference gradient and Hessian are computed from function values.

The results in Table 5.7 show that the new method that utilizes otherwise idle processors to perform

speculative partial Hessian evaluations is more efficient, in terms of concurrent function evaluation steps,

than a standard method that doesn't utilize these processors, but that these improvements are not propor-

tional to the amount of new information that is being utilized. This is to be expected, however, because as

the table shows, Newton's method, which uses n times as much information as the BFGS method, is

only about 6 times as fast on the average on these problems. Combining the last two rows of Table 5.7

shows that the speedups are at least 0.45 of the optimal in all cases, which is considered reasonable in

parallel computation. These results also indicate, however, that there is still an opportunity to find new

algorithms that make better use of partial Hessian information.

6. Concluding Remarks

Recent research in unconstrained optimization has demonstrated that even though the field has

reached a fairly mature state, many interesting and potentially fruitful research possibilities still exist. The

research on the BFGS, DFP, and their convex combinations show that there are still fundamental theoreti-

cal issues concerning secant updates that need to be better understood. The research on the SRI and on

updates beyond the BFGS (0<I) illustrates that there may be updates that perform better than the BFGS

in practice, but that we need to understand these updates better in both practice and theory. It appears

increasingly unlikely, however, that any new secant update will result in a large improvement, s y greater

than 25%, over the BFGS.

The research on derivative tensor methods for nonlinear equations and unconstrained optimization

has led to surprisingly large improvements in efficiency over standard methods, often in the range of 30-

50%. Siace these methods constitute just one of many possibilities for incorporating additional function

or derivative information into optimization algorithms by using nonstandard models, this research indi-

cates that there may be other interesting unexplored possibilities for utilizing nonstandard models in

31

- unconstrained optimization algorithms.

Research in parallel optimization methods is still in its infancy. Much of the research described in

Section 5 can be considered to be fairly straightforward adaptations or generalizations of standard

methods. We consider it likely that more novel parallel optimization research will result from consider-

ing parallel methods for specific classes of large scale optimization problems. Indeed, the consideration

of specific classes of large scale optimization problems, which has been neglected in this paper, probably
holds many of the future challenges for research in unconstrained optimization.

32

7. References

C. G. Broyden [1970], "The convergence of a class of double-rank minimization algorithms", Parts I and
H, Journal of the Institute of Mathematics and it" Applications 6, pp. 76-90, 222-236.

C. G. Broyden. J. E. Dennis Jr., and J. J. Mord [1973], "On the local and superlinear convergence of
quasi-Newton methods", Journal of the Institute of Mathematics and its Applications 12, pp. 223-246.

R. H. Byrd, J. Nocedal, and Y. Yuan [1987], "Global convergence of a class of quasi-Newton methods on
convex problems", SIAM Journal on Numerical Analysis 24, pp. 1171-1190.

R. H. Byrd, R. B. Schnabel, and G. A. Shultz [1988a], "Using parallel function evaluations to improve
Hessian approximation for unconstrained optimization", Annals of Operations Research 14, pp. 167-193.

R. H. Byrd, R. B. Schnabel, and G. A. Shultz [1988b], "Parallel quasi-Newton methods for unconstrained
optimization", Technical Report No. CU-CS-396-88, Department of Computer Science, University of
Colorado at Boulder, to appear in Mathematical Programming.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint [1986], "Testing a class of methods for solving minimiza-
tion problems with simple bounds on the variables," Research Report CS-86-45, Faculty of Mathematics,
University of Waterloo, Waterloo, Canada.

A. R. Conn. N. I. M. Gould, and Ph. L. Toint [1987], "Convergence of quasi-Newton matrices generated
by the symmetric rank one update", Report 87/12, Department of Computer Sciences, University of
Waterloo, Waterloo, Canada.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint [1988], "Global convergence of a class of trust region algo-
rithms for optimization with simple bounds", SIAM Journal on Numerical Analysis 25, pp. 433-460.

K. A. Connolly and J. Nocedal [1987], "Quasi-Newton methods for parallel processing", Technical
Report NAM 05, Department of Electrical Engineering and Computer Science, Northwestern University.

W. C. Davidon [1959], "Variable metric methods for minimization", Argonne National Laboratory
Report ANL-5990 (rev.).

W. C. Davidon [1975], "Optimally conditioned optimization algorithms without line searches",
Mathematical Programming 9, pp. 1-30.

D. W. Decker and C. T. Kelley [1980a], "Newton's method at singular points I", SIAM Journal on
Numerical Analysis 17, pp. 66-70.

D. W. Decker and C. T. Kelley [1980b], "Newton'.. Lmethod at singular points f1", SIAM Journal on
Numerical Analysis 17, pp. 465-471.

S

33

J. E. Dennis Jr. and R. B. Schnabel [1983], Numerical Methods for Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

L. C. W. Dixon and K. D. Patel [1982], "The place of parallel computation in numerical optimization IV,
parallel algorithms for nonlinear optimisation", Technical Report No. 125, Numerical Optimisation Cen-
tre, The Hatfield Polytechnic.

R. Fletcher [1970], "A new approach to variable metric methods", Computer Journal 13, pp. 317-322.

R. Fletcher [1980], Practical Method of Optimization, Vol. 1, Unconstrained Optimization, John Wiley
and Sons, New York.

R. Fletcher and M. J. D. Powell [1963], "A rapidly convergent descent method for minimization", Com-
puter Journal 6, pp. 163-168.

P. D. Frank [1984], "Tensor methods for solving systems of nonlinear equations", Ph.D. Thesis, Depart-
ment of Computer Science, University of Colorado at Boulder.

P. E. Gill and W. Murray [19721, "Quasi-Newton methods for unconstrained optimization", Journal of the
Institute of Mathematics and its Applications 9, pp. 91-108.

P. E. Gill, W. Murray, and M. H. Wright [19811, Practical Optimization, Academic Press, London.

D. Goldfarb [1970], "A family of variable metric methods derived by variational means", Mathematics of
Computation 24, pp. 23-26.

D. Goldfarb [1976], "Factorized variable metric methods for unconstrained optimization", Mathematics of
Computation 30, pp. 796-811.

L. Grandinetti [1978], "Factorization versus nonfactorization in quasi-Newtonian methods for differenti-
able optimization," Report N5, Dipartimento di Sistemi, Universita della Calabria.

A. 0. Griewank [1980], "Starlike domains of convergence for Newton's method at singularities", Numer-
ische Mathematik 35, pp. 95-111.

A. 0 Griewank and Ph. L. Toint [1982], "On the unconstrained optimization of partially separable func-
tions", in Nonlinear Optimization 1981, M. J. D. Powell ed., Academic Press, London, pp. 301-312.

S. P. Han [1986], "Optimization by updated conjugate subspaces." in Numerical Analysis. Pitman
Research Notes in Mathematics Series 140, D.F. Griffiths and G.A. Watson, eds., Longman Scientific and
Technical, Burnt Mill, England, pp. 82-97.

R. H. F. Jackson [19831, '"rensors, polyads, and high-order methods in factorable programming", Ph.D.
Dissertaion, The George Washington University, Department of Operations Research, Washington, DC.

*I

34

R. H. F. Jackson and G. P. McCormick [1986], "The polyadic structure of factorable function tensors with
application to high-order minimization techniques", Journal of Optirnization Theory and Applications 51,
pp. 63-94.

F. A. Lootsma (1984], "Parallel unconstrained optimization methods," Report No. 84-20, Department of
Mathematics and Informaics, Technische Hogeschool Delft.

G. P. McCormick [1983], Nonlinear Programming: Theory, Algorithms and Applications, John Wiley &

Sons, New York.

J. J. Mord, B. S. Garbow, and K. E. Hillstrom [1981], "Testing unconstrained optimization software",
ACM Transactions on Mathematical Software 7, pp. 17-41.

J. J. Mord and D. C. Sorensen [1983], "Computing a trust region step", SIAM Journal on Scientific and
Statistical Computing 4, pp. 553-572.

M. R. Osborne and L. P. Sun [1988], "A new approach to the symmetric rank-one updating algorithm",
Report NMO/01, Department of Statistics, Australian National University, Canberra, Australia.

M. J. D. Powell [19761, "Some global convergence properties of a variable metric method without exact
line searches", in Nonlinear Programming, R. Cottle and C. Lemke, eds. AMS, Providence, R.I., pp. 53-
72.

M. J. D. Powell [1986], "How bad are the BFGS and DFP methods when the objective function is qua-
dratic?", Mathematical Programming 34, No. 1, pp. 34-47.

M. J. D. Powell [1987], "Updating conjugate directions by the BFGS method", Mathematical Program-
ming 38, pp. 29-46.

R. B. Schnabel [1983], "Quasi-Newton methods using multiple secant equations," Technical Report CU-
CS-247-83, Department of Computer Science, University of Colorado at Boulder.

R. B. Schnabel [1987], "Concurrent function evaluations in local and global optimization," Computer
Methods in Applied Mechanics and Engineering 64, pp. 537-552.

R.B. Schnabel and T. Chow [1988], "Tensor methods for unconstrained optimization," (in preparation).

R. B. Schnabel and P. Frank [1984], "Tensor methods for nonlinear equations", SIAM Journal on Numeri-
cal Analysis 21, pp. 815-843.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss [1985], "A modular system of algorithms of unconstrained
minimization", ACM Transactions on Mathematical Software 11, pp. 419-440.

35

D. F. Shanno [1970], "Conditioning of quasi-Newton methods for function minimization", Mathematics
- of Computation 24, pp. 647-657.

S G. A. Shultz, R. B. Scinabel, and R. H. Byrd [1985], "A family of trust region based algorithms for
unconstrained minimization with strong global convergence properties", SIAM Journal on Numerical
Analysis,22, pp. 47-67.

A. Stachurski [1981], "Superlinear convergence of Broyden's bounded 9-class of methods", Mathemati-
cal Programming, 20, pp. 196-212.

P. Wolfe [1969], "Convergence conditions for ascent methods", SIAM Review, 11, pp. 226-235.

P. Wolfe [1971], "Convergence conditions for ascent methods II: some corrections", SIAM Review, 13,
pp. 185-188.

Y. Zhang and R. P. Tewarson (1986], "On the development of algorithms superior to the BFGS method in
Broyden's family of updates", Department of Applied Mathematics and Statistics Report AMS 86-69,
State University of New York, Stony Brook, New York.

Unclassified ~~36
-. ~~ 1)1 09 O7~.5'

REPORT COCCUMENTArION PAGE
~ ~Eo~1 5~N~'. ~SsI~ca~IONIs. AGSTRICTIV4 "AAINGS

Unclassified ________________________

* __________________________________Approved for public release;

~. CIC~?ONJOWP~G~AOMO C)4~UL4distribution unlimited

,6 7tAocP&Aftca CoMZAr%%z.na APOR 4UMOI6(51S S. MOM4,rONG 0RAM4IZAr%0M AIMA km? eaptis

CU-CS--414-88 - c 24UL.-I-/nA
4 4.6 -'$M :- I.PORMNG 0ZAC.%MIA I Mt IL op061cis rsaMOL. 74AMS 0 a dommONIG amcAmiazAriam

University of Colorado IU.S. Army Research Office

6.. A~0RES IC~dV slat*. jag ZIP C.da, 711. -40001SSS ICi*,. 5'atf 4. ZIP Cade,

Campus Box B-19 P.O. Box 12211

Boulder, Colorado 80309 Research Triangle Park, NC 27709-2211

DAAL 03-88-K-0086

am -%O00aUS3 stass old ZIP Cjgwi M0 SCUACS OP SUNOIMC NOS.

00U(3GAA PRO.jacr rASK WORK .iftaf

I aLISAMNT .144. MO. ON.

Sequential and Parallel Methods for

12. XIASONAL. AkU131Unostaie Otiiato
Robert B. Schnabel UcntandOtmzto

13& - P 3 -SPCA 13b. 71A44 C:VaREO 14 OATR OP 44PONT I r.. Ad.. .4 15. P&G& =um r

- echnical $no" 83Lfl5Lj5 08 9 /O/LI+ 88/10/20 3

methods, parallel optimization

19. AS.ACIR4 'C.aM.eun vvwa *(wre .4,ddgl &V *term mumwl

This paper reviews some interesting recent developments in the field of unconstrained optimizazion. First we

discuss some recent research regarding secant (quasi-Newton) methods. This includes analysis that has led to arn

improved understanding of the comparative behavior of the BFGS. DFP. and other updates in the Broyden class, as
well as computational and theoretical work that has led to a revival of interest in the symmetric rank one update.
Second we discuss recent research in methods that utilize second derivatives. We describe tensor methods for

uinconstrained optimization, which have achieved considerable gains in efficiency by augmenting the standard qua-
drauc model with low rank third and fourth order terms, in order to allow the model to interpolate some fuinction
and gradient information from previous iterations. Finally, we wil review some work that has been done in con-
sming general purpose methods for solving unconstrained optimization problems on parallel computers. This
researh has led to a renewed interest in various ways of performing the linear algebra computations in secant
methods, and to new algorithms that make use of multiple concurren t function evaluations.

2K0s. xiarosvZ-etF op AE"lRAC 21. AaTR SAUJNT' CL.&ASAIPCArIOM6

UMC~~5SIuE/l.~t~eO SAME AS AVr -OICISRA~S Unclassified

'4& AME OP 04Gt4IidIIGUA4. =IL -1LP'.ON N 4MEEN4 224L OPILICS SY-AG0I.

Dr. Jagdish Chandraa
.lsideAM cadea

Dr. agdih Chndra619/549-0641

OF F,:pm 147OZ.33aAPR MI004 OP I A 71 iS 003GLATt IT nr 1-zwqf Pd

19 sscijAirv# ~ ~ P*, .G

